OTC 8-Hour Ozone Modeling Results 2002 Base Case Performance One-Atmosphere Modeling Platform

Gopal Sistla New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

Presented at the OTC Annual Meeting held at Newark, DE on November 2-3, 2005

Background

• OTC Modeling Committee charge to its members

• NYDEC initiated the SIP modeling platform design

• UMD with support from MDE developed the meteorological fields for 2002 using MM5

• MARAMA and contractor worked with MANEVU states to prepare 2002 base year emission inventory

Multi-P Modeling Centers

- NYSDEC, MDE/UMD, NJDEP/Rutgers ORC, NESCAUM, and VADEQ
- All centers participated in a benchmark of CMAQ and SMOKE models to assess compatibility between different hardware/software platforms
- Benchmark tests revealed good compatibility between the centers within computational constraints of the hardware/software systems

Modeling Domain

CMAQ Model Set-up

• Horizontal grid resolution at 36 and 12 km, with 22 levels in the vertical

• Models: CMAQ v4.4, SMOKE v2.1, MM5 v3.6-3

• 2002 Emissions developed through MANE-VU

• to provide BCs for the CMAQ 12 km domain

Ozone Modeling Assessment

- Simulation covers April through October 2002
- Model assessment statistics for O₃, NO, NO₂, CO, SO₂, Isoprene, Ethane, Formaldehyde, and NO_x/TNMOC ratios
- Spatial distribution of daily observed and predicted maximum 8-hour O₃ concentrations at 12 km posted at <u>ftp://www.dec.state.ny.us/dar/air_research/mku</u>
- Model evaluation statistics for daily maximum 1-hour and 8-hour O₃ posted at ftp://www.dec.state.ny.us/dar/air research/kevin

Performance Goals

- Correctly Depict Spatial Patterns (*Failure here would raise doubts of the model's usefulness in simulating future scenarios*)
- Show No Strong Bias (*Consistent over or under-predicting better than random; underpredictions could mean weak model sensitivity to future case reductions*)
- Correctly Render Sea Breeze Effects and Gradients (*Of primary importance in many coastal areas*)

Performance Statistics

- 1. Coefficient of determination (R²)
- 2. Normalized mean error (NME), %
- 3. Root mean square error (RMSE), ppb
- 4. Fractional gross error (FE), %
- 5. Mean absolute gross error (MAGE), ppb
- 6. Mean normalized gross error (MNGE), %
- 7. Mean bias (MB), ppb
- 8. Mean normalized bias (MNB), %
- 9. Mean fractionalized bias (MFB), %
- 10. Normalized mean bias (NMB), %

Coefficient of determination (r^2) for daily maximum 8-hour O_3

Domain-wide average daily maximum 8-hour O₃

Daily average ethene, isoprene, and formaldehyde concentrations

6-9 am NOx, TNMOC, and NOx/TNMOC ratios

Monthly variation of trace gases

Selected statistical measures for daily maximum 8-hour O₃ in the Albany-Schenectady-Troy, NY nonattainment area

Diurnal variation at four ozone monitors in the Albany-Schenectady-Troy, NY nonattainment area

MASSACHUSETTS	PERFORMA	NCE STATISTIC	S FOR 2002 CAA	CMAQ	RUN (OTB/OTV	V plus CAIR)	
Location	AIRS ID	Mean Normalized Gross Error %			Mean Normalized Bias %		
		1 hr daily max	8 hr daily max		1 hr daily max	8 hr daily max	
Truro	250010002	15.2	15.0		8.2	9.7	
Adams	250034002	14.7	14.6		-6.2	-7.3	
Fairhaven	250051002	14.2	15.6		5.3	6.1	
Lawrence	250090005	17.7	17.0		2.4	0.8	
Lynn	250092006	16.6	17.6		-7.5	-8.5	
Newbury	250094004	16.2	16.4		8.8	8.6	
Agawam	250130003	17.7	16.2		-7.6	-8.8	
Chicopee	250130008	17.2	16.6		-11.7	-12.4	
Amherst	250150103	15.5	14.3		-3.3	-2.1	
Ware	250154002	14.4	14.4		-6.7	-6.6	
Stow	250171102	16.8	14.9		-2.1	-5.4	
Milton	250213003	18.8	23.0		-15.9	-20.6	
Boston (Long Island)	250250041	19.1	22.4		-10.5	-15.4	
Boston	250250042	21.6	26.6		-18.9	-24.3	
Ware	250270015	18.5	17.5		-7.2	-10.1	
		16.9	17.5		-4.9	-6.4	

Maryland Analyses

- Extremely good simulation of 1-hr (8-hr) maximum $O_3 R > 0.9$
- CMAQ-calculated O_3 concentrations have high bias at night leading to a 10% highbias in 24-hr average O_3 . Biases in 1-hr and 8-hr maximum O_3 are small.
- CMAQ-calculated 1-hr maximum O₃ concentrations over MD are 10-15% too low during major pollution events.
- Diurnal variation in O₃ well simulated. No obvious (eyeball norm) temporal shift in timing of maxima/minima.
- Spatial pattern of O_3 pollution events is well captured by CMAQ.

Maryland Analyses (in progress)

- Comparison of CMAQ-calculated O_3 concentrations with UMD aircraft data
- Comparison of CMAQ-calculated PM_{2.5} concentrations with measurements during non-summer seasons
- Comparison of CMAQ-calculated NO and SO₂ with measurements
- Comparison of PM_{2.5} components (sulfate, nitrate, ammonium, elemental carbon, soil/crustal organic) with measurements

PA Analysis: 8-hr Max R² Values

Lancaster Monitor

2002 Hourly Ozone Comparison Lancaster 8/6/02 to 8/26/02

Lancaster Analysis

Good:

R²: Model doing a good job over all.

Correlation: Model directionally good.

Solar Rad Correlation: Model doing well during daylight hours (when max occurs).

Bad:

Coefficient of Divergence: Significant difference in absolute model concentrations overall. These are generally confined to the overnight hours (may not be not as important).

Well Simulated Plume from VA to CT

Daily Maximum 8-hr Ozone Concentrations, Predicted

Daily Maximum 8-hr Ozone Concentrations, Observed Tuesday, 06/11/2002, Maximum =123 ppb

Narrow band of high ozone from Maryland to southwest New England Well Simulated

Daily Maximum 8-hr Ozone Concentrations, Predicted Sunday, 08/04/2002, Maximum =121.2 ppb

Daily Maximum 8-hr Ozone Concentrations, Observed Sunday, 08/04/2002, Maximum =117 ppb

Expansive Area of Elevated Ozone; Well Simulated Clean Marine Influence along all but Northern New England Coast; Seabreeze Transport of Ozone along N. New England Coast Well Simulated

Daily Maximum 8-hr Ozone Concentrations, Predicted Tuesday, 09/10/2002, Maximum =114.0 ppb

Daily Maximum 8-hr Ozone Concentrations, Observed Tuesday, 09/10/2002, Maximum =119 ppb

Summary

• Spatial patterns of observed and simulated daily maximum 8-hour ozone exhibit good agreement

• Model has tendency to underpredict the observed ozone maxima

• Fair agreement is noted between measured and predicted daily maximum concentrations for other pollutants

What's Next?

- States are working with MARAMA to compile the base case emission inventory for 2009
- NYSDEC is setting up 2009 CAA Modeling Run (OTB/OTW plus CAIR)
- States are working to identify potential state and regional level control strategies that may be necessary for demonstrating attainment of the 8-hour ozone NAAQS

2009 CAA (OTB/OTW plus CAIR) Run

MANEVU 2009 Emission Files (OTB/OTW plus CAIR) - late November

Other RPOs 2009 Emission Files (OTB/OTW plus CAIR) - late November

Canada 2009 Emission Files (or surrogate) – late November

2009 (OTB/OTW plus CAIR) CMAQ Simulation - late December

2009 (OTB/OTW plus CAIR) Projected Design Values – mid January

OTB means on the books OTW means on the way and effective by 2009 CAIR means EPA's Clean Air interstate Rule

Participants in OTC Modeling Effort

- **Maryland Department of the Environment (MDE)**
- Mike Woodman and Tad Aburn
- **University of Maryland at College Park (UMD)**
- Jeff Stehr, Sheryl Ehrman, Dale Allen, Dalin Zhang, Shunli Zhang
- **Virginia Department of Environmental Quality (VADEQ)** Shiang-Yuh Wu, Mike Kiss, Jin-Sheng Lin, Tom Ballou
- **New Jersey Department of Environmental Protection (NJDEP)** *Ray Papalski, Alper Unal*
- **Rutgers University Ozone Research Center (ORC)**
- Nilesh Lahoti, Wei Li, Sastry Isukapalli, Panos Georgopoulos
- **Northeast States Consortium of Air Use Management (NESCAUM)** *Gary Kleiman, Jung-Hun Woo, Shan He*
- New York State Department of Environmental Conservation (NYSDEC)
- Mike Ku, Winston Hao, Kevin Civerolo, Chris Hogrefe, Eric Zalewsky, Robert Henry, Gopal Sistla